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The equations for the quadrupolar relaxation of spin 3 were molecules, so that MRI or localized NMR spectroscopy can
derived for the Redfield limit where the molecular reorientation make a significant contribution to the clinical implementa-
rate is much faster than the size of the quadrupolar interaction. tion of BNCT. Since biological environments can impose
In the extreme narrowing regime (v0tc ! 1) , the results converge motional restriction on these 10B-labeled molecules, a quan-
to the analytical expressions for the relaxation rates available in titative understanding of 10B relaxation under such condi-
the literature. For slower motions, both longitudinal (spin–lattice)

tions is important for both direct and indirect detection ofand transverse (spin–spin) relaxations are described by a superpo-
the 10B spins (7–10 ) .sition of three exponentials, where both the rates themselves and

their relative weights are functions of v0tc . Numerical calculations
of the relevant relaxation parameters in the intermediate v0tc THEORY
regime are presented. Spin–lattice relaxation is described to very
good approximation by a single exponential for all values of v0tc , Spin–Spin Relaxation
with the weight of the dominant decay mode exceeding 0.97 for
the entire range. The predictions of these simulations were found The Hamiltonian for the quadrupolar interaction can be
to be in good agreement with experimentally measured relaxation written as
rates of the 10B resonances in the sodium salt of Na2B12H12S, mer-
captoundecahydro-closo-dodecaborane (sodium borocaptate or
BSH) dissolved in glycerol, determined at v0 Å 53.73 MHz, be- HQ Å

3e 2qQ

4I(2I 0 1)tween temperatures of 268 and 323 K. The fit to the experimental
results yielded a value of 1.25 MHz for the average 10B quadrupolar
coupling constant in this molecule. q 1997 Academic Press 1 FI 2
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INTRODUCTION where e 2qQ is the quadrupolar coupling constant (qcc) , h
is the asymmetry parameter of the electric field gradient

It is well known that the quadrupolar interaction causes (EFG) tensor, and I/ and I0 are the usual raising and low-
phenomena such as nonexponential relaxation (1, 2) and ering operators. The spin operators are defined in the labora-
dynamic frequency shifts (3, 4) , for nuclear spins ( I ú 1

2) tory principal axes, while the EFG tensor components are
reorienting in liquids at a rate which is slower than defined defined in the molecular frame of reference. Substituting the
by the extreme narrowing condition (v0tc ! 1) . Solutions value for I Å 3, and converting the Hamiltonian to units of
and descriptions characterizing this behavior were derived hertz, one obtains
mainly for half-integer spins, e.g., 3

2 (1) , 5
2, and 7

2 (2–5) . A
solution for spin 3 was not yet derived, possibly because
only a single nucleus in the periodic table ( 10B) possesses HQ Å
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this spin quantum number. There is, however, some interest
in characterizing the relaxation properties of the 10B nucleus,

This Hamiltonian is mathematically identical to the Ham-due to its necessary appearance in molecules used in a form
iltonian describing the zero-field splitting (ZFS) interactionof cancer treatment known as boron neutron capture therapy
in ESR (3, 4) . As long as the absolute size of the quadrupo-(BNCT) (6) . In this treatment, it is very important to con-
lar interaction (which is of the order of qcc) is small com-duct the neutron irradiation at a time at which the ratio
pared to the modulation rate of this interaction (which is ofbetween the concentrations of the boronated molecule in the

tumor and in the blood is maximized, and to know the 10B the order of the molecular correlation rate t01
c ) , the longitu-

dinal and transverse relaxation properties can be derivedconcentrations for dosimetry planning. There is currently
no method for noninvasive monitoring of 10B-containing through Redfield’s relaxation matrix R (11) . The real (R r )
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11QUADRUPOLAR RELAXATION OF SPIN 3

and imaginary (R i ) parts of each matrix element can be Performing the calculations as prescribed in Eqs. [3] – [6]
leads tocalculated through (4)

R r
aa =bb =

R *2 Å 5c *S A B C
B D E
C E F

D , [11]Å 2Jaba =b =(vab) 0 dab ∑
c

[Jacbc(vbc) / Jcacb =(vcb =)]

[3]
where

R i
aa =bb = Å 0dab ∑

c

[Kacbc(vbc) / Kca =cb =(vcb =)] , [4]

A Å 0S15
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j0 /
39
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j1 / 9 j2Dwhere

Jaba =b =(vab) 0 iv0tcS21
2

j1 0 6 j2D [12a]
Å c * j[(a 0 b)v0] »aÉT 2p

Éb … »a *ÉT 2p
Éb * …* [5]

Kaba =b =(vab) B Å 3
√
15 j1 [12b]

Å c *pv0tc j[(a 0 b)v0] »aÉT 2p
Éb … »a *ÉT 2p

Éb * …*, [6] C Å 6
√
2 j2 [12c]

where * denotes the complex conjugate and c * is a constant
D Å 0S27

10
j0 /

171
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j1 /
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j2Dgiven in our case by
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The spectral densities are defined as E Å 3
√
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The indices a , b , c , a *, and b * run over the states from 03
to /3, and p Å a 0 b . T 2p are the spin operators as defined / iv0tcS39

10
j1 0

42
5

j2D . [12f]
in Ref. (4) .

For spin–spin relaxation, the elements of R connect the
allowed transitions in the energy level system, and are there-

The elements in R *2 are identical to those in the full Redfieldfore calculated only for a Å a * 0 1 and b Å b * 0 1. For
matrix, except forspin I , there are 2I allowed transitions, and the rank of R is

in principle 2I . However, the symmetry of these transitions
E Å R0201010 / R020101 [13a]around the unperturbed Zeeman energy v0 suggests that the

dimensionality of the problem should be reducible to rank
andI (or I / 1

2 for half-integer spins) . Based on the inversion
invariance of the full matrix R (Raa =bb = Å R0b =b0a =a) , and

F Å R010010 / R01001 . [13b]the reflection invariance of the vector representation of the
operator I/ , i.e., (I/)aa = Å (I/)0a =0a , we can define a reduced
3 1 3 relaxation matrix R*, which governs the evolution of The relaxation matrix R2 is a complex symmetric matrix,
a reduced density vector r *, with a spectrum of complex eigenvalues. However, at both

limits (v0tc ! 1 and v0tc @ 1) its imaginary part is negligi-
ble. Furthermore, at the limit v0tc @ 1, the nonsecular contri-dr *

dt
Å R *r *, [9]

butions are negligible and the matrix converges to a diagonal
where the elements of r * are defined as symmetric combina- form.
tions r: The time-domain signal of the transverse magnetization

consists of a superposition of three exponentially decaying
components for which the weights (amplitudes) and decay

r * Å 1
2 Sr32 / r0203

r21 / r0102

r10 / r001

D . [10] rates can be calculated through the eigenvalues and eigen-
vectors of R *2 . Let lj and jj be the j th eigenvalue and eigen-
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12 BARAM AND BENDEL

vector, respectively, and let S/ be the normalized vector As expected, the matrix R1 is a real symmetric matrix for
all values of v0tc , and its eigenvalues are real. The matrix isrepresentation of I/ , with components
free of secular contributions, and as a result the off-diagonal
elements are comparable to the diagonal elements for allS/ Å

√
3/14,

√
5/14,

√
6/14; [14]

values of v0tc . In the v0tc @ 1 limit the matrix elements
(and its eigenvalues) are of the order of (v 2

0tc )01 . Thethen the weight of each of the three decaying exponentials
function describing the relaxation of the longitudinal magne-is the square of the scalar product,
tization consists of three exponentials with rates correspond-
ing to the three eigenvalues of the above matrix,W2, j Å (S/rjj)

2 , [15]

the relaxation rates are 1
T j

1

Å 0l j , [20]

1
T j

2

Å 0lr
j , [16]

and the weights of each component are given by the scalar
product

and the second-order dynamic frequency shifts ( in Hz) are

W1, j Å (Szrjj)
2 , [21]

dnj Å li
j /2p, [17]

where the vector Sz has componentswhere the superscripts i and r refer to the imaginary and real
parts of the respective eigenvalues.

Sz Å 1/
√
14,2/

√
14,3/

√
14. [22]

Spin–Lattice Relaxation

Here the matrix elements connect the populations of the
SIMULATIONSdifferent energy levels, i.e., a Å a * and b Å b *. The full

Redfield matrix should therefore consist of 7 1 7 elements,
Extreme Narrowing Limitbut symmetry considerations again allow the calculation of

the relaxation rates through a reduced matrix of size 3 1 3.
In the extreme narrowing limit (v0tc ! 1), the spectralThis is due to the fact that the energy levels can be seen as

densities jn are n-independent, and they converge to theirbeing arranged in three pairs (mz Å {1, {2, {3) symmetri-
limiting value tc . In addition, the imaginary part of thecally around the center level (mz Å 0), the absolute energy
transverse relaxation matrix R*2 is of order O(t 2

c ) , negligibleof which is irrelevant. In other words, the operator Iz is
compared to its real part. Both relaxation matrices are realantisymmetric with respect to reflection, and the trace of the
symmetric matrices in this regime. Furthermore, it is easydensity matrix is time invariant. The reduced matrix for
to see that the matrices become similar, with identical spectraT1 relaxation again fulfills Eq. [9] , but the density matrix
of eigenvalues. In both cases, the eigenvector j3 correspond-elements are now given by
ing to the largest eigenvalue l3 (recall that the eigenvalues
are all negative) is identical to the characteristic weight vec-
tor, S/ or Sz , of the relaxation process. The two additional

r Å 1
2 Sr33 0 r0303

r22 0 r0202

r11 0 r0101

D . [18]
eigenvectors ( in each case) are orthogonal to the characteris-
tic weight vector, and as a result the weights of their de-
caying exponentials vanish. Thus, both T1 and T2 appear

The reduced Redfield matrix has the same form as in Eq. single-exponential, with the eigenvalues approaching the
[11], with the elements given by well-known analytical result (11)

A Å 0(15 j1 / 6 j2) [19a]
0l3 Å 45c *tc Å

1
T1

Å 1
T2B Å 15 j1 [19b]

C Å 6 j2 [19c]
Å 3p 2(2I / 3)(qcc)2(1 / h 2 /3)tc

10I 2(2I 0 1)
. [23]

D Å 0(24 j1 / 12 j2) [19d]

E Å 9 j1 [19e]
When the condition for the extreme narrowing approxima-

tion is no longer fulfilled, the relaxation of the transverseF Å 0(51 j1 / 174 j2) /5. [19f]
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13QUADRUPOLAR RELAXATION OF SPIN 3

FIG. 2. Relaxation rates for each of the three transverse relaxation
components for j Å 1, 2, 3, as indicated on the right side of the plot. TheFIG. 1. Relative weights for each of the three transverse relaxation
vertical scale is in units of (qcc)2tc .components (W2, j) , for j Å 1, 2, 3, as indicated on the right side of the

plot.

the three transitions are displayed in Fig. 2, in units of
(qcc)2tc . As evident from the graph, the dominant modemagnetization (Mt ) , following excitation by a 907 pulse, is
also relaxes at the slowest rate. The graphs in Fig. 3 illustrategiven by
the results of the calculation for the case of a quadrupolar
coupling constant of 1.25 MHz, and a field strength of 11.75

Mt ( t) Å M0 ∑
3

jÅ1

W2, j exp(0t /T j
2) , [24] T, for which the 10B resonance frequency is 53.73 MHz.

The expected linewidths (full width at half-intensity) and
second-order dynamic frequency shifts of the dominant tran-where M0 is the equilibrium magnetization. The correspond-
sition are shown as a function of tc . The maximum–mini-ing equation describing the recovery of the longitudinal mag-
mum of the linewidth and the sign inversion of the dynamicnetization (Mz) , following inversion by a 1807 pulse, is
shift are results of the third-order solution for the eigenval-
ues, and are not encountered for lower quadrupolar spins.

Mz( t) Å M0[1 0 2 ∑
3

jÅ1

W1, j exp(0t /T j
1)] . [25]

Spin–Spin Relaxation and Dynamic Frequency Shifts

As long as the second-order dynamic frequency shifts are
small compared to the linewidths, and relaxation is predomi-
nantly determined by one of the three modes, it is more
natural to describe the system through analysis of the trans-
verse relaxation, rather than apply the full lineshape calcula-
tion. In all the calculations presented in this section the
effective quadrupole coupling constant is the product
(qcc)

√
1 / h 2 /3.

Figure 1 displays the relative weights (W2, j) of the three
components contributing to T2 relaxation, as function of
v0tc . As expected, one of the amplitudes (W2,3 ) dominates
in the extreme narrowing limit. From about v0tc É 1, the
amplitudes gradually converge, reaching the asymptotic val-
ues of 6/14, 5/14, and 3/14 at v0tc @ 1. These values
correspond to the relative intensities of the relevant transi- FIG. 3. Linewidth at half-intensity, and dynamic frequency shift for
tions in the solid-state spectrum. the dominant j Å 3 relaxation mode, calculated for n0 Å 53.73 MHz and

qcc Å 1.25 MHz.The values of the exponential relaxation rates for each of
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14 BARAM AND BENDEL

Spin–Lattice Relaxation

The calculation of the weights for the T1 relaxation com-
ponents revealed that the amplitude of the j Å 3 component
(which corresponds to the symmetric combination of the
populations) completely dominates for the entire range of
v0tc values which are still amenable to the Redfield formal-
ism, using realistic values for the Larmor frequency and
typical 10B quadrupolar coupling constants. In fact, the
weight of this component asymptotically approaches a value
of 0.97, with the other two components contributing only
about 3% to the spin–lattice relaxation. Therefore, for the
practical purpose of predicting and evaluating 10B relaxation
at intermediate v0tc values, the T1 process can be considered
single-exponential, with a rate corresponding to the l3 eigen-

FIG. 5. Molecular structure of the mercaptoundecahydro-closo-dodeca-value.
borane (BSH) anion.

Approximate Solutions
exact calculations for spin–lattice and spin–spin relaxation,

Halle and Wennerström (12) suggested the use of the
and also the approximate solutions by Eqs. [26] and [27].

eigenvectors obtained for the extreme narrowing limit as a
One sees that indeed, as long as one relaxation component

basis for an approximation to the relaxation rates for slower
dominates, the approximate and exact solutions are very

motions. Their approach results in single approximate relax-
close. This is fulfilled for T1 over the entire range, but breaks

ation rates for T1 and T2 . In our case, the corresponding
down for T2 around v0tc É 1.

eigenvectors are given in Eqs. [14] and [22]. The approxi-
mate relaxation rates derived are EXPERIMENTAL METHODS

10B-enriched Na2B12H12S (BSH or sodium borocaptate,S 1
T2
D

appr

Å 9
2

c*(3 j0 / 5 j1 / 2 j2) [26] enrichment ¢95%) was purchased from Boron Biologicals
(Raleigh, NC) and used without further purification. BSH
was dissolved at 75 mM in glycerol. NMR experimentsS 1

T1
D

appr

Å 9c *( j1 / 4 j2) . [27] were performed on a Bruker DMX-500 NMR spectrometer
(Karlsruhe, Germany), using a 10-mm broadband probe.
The sample was contained in a quartz (boron-free) NMRFigure 4 displays the l3 eigenvalues derived from the
tube, but the probe itself gave rise to a rapidly decaying
background 10B signal. It was verified that this signal de-
cayed to below noise level (after 1000 scans) for a preacqui-
sition ‘‘dead’’ time (DE) of 45 ms, which was then used in
all the reported experiments (which all employed less than
1000 scans) . T1 experiments were performed using a stan-
dard inversion-recovery pulse sequence with 8–16 inversion
delays; 1807 pulse lengths were about 40 ms. The signal was
easily visible in a single scan, but up to 80 averages were
used (per inversion delay) to improve S /N . Signal intensities
were measured on the Fourier-transformed spectra. Trans-
verse relaxation was measured with CPMG echo trains (av-
eraging up to 320 such echo trains) using delays of 200–
700 ms between successive 1807 pulses. Signal intensities
were measured directly on the time-domain data. All data
were acquired with a sampling rate of 5 ms between succes-
sive sampling points (SW Å 200,000).

EXPERIMENTAL RESULTS AND DISCUSSIONFIG. 4. Longitudinal (r1, circles) and transverse (r2, diamonds) relax-
ation rates of the dominant j Å 3 relaxation components, in units of

A diagram of the molecular structure of the BSH anion(qcc) 2tc . The dashed curves were calculated by the approximate solutions,
Eqs. [26] and [27]. is shown in Fig. 5. The four inequivalent boron sites can be
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15QUADRUPOLAR RELAXATION OF SPIN 3

TABLE 1
Experimentally Derived Parameters for 10B Relaxation

in BSH/Glycerol

Temperature
(K) 1/T1 (s01) 0l3 (s01)a W3

a

268 299 1758 0.41
273 379 1718 0.50
278 483 1940 0.75
283 596 1920 0.90
288 685 1707 1.0
293 749 1475 1.0
298 764 1202 1.0
303 719 943 1.0
308 625 738 1.0
318 408 457 1.0
323 343 356 1.0

a 0l3 is the apparent rate for the slowest component of transverse relax-
ation, and W3 is the apparent weight of this component when extrapolated
to t Å 0.

FIG. 6. Boron-10 NMR spectra (at 53.73 MHz) of 75 mM BSH dis- and 907 pulse lengths were recalibrated at each temperature.
solved in D2O, at a temperature of 283 K. The upper trace spectrum was The integrated peak areas for these two spectra were com-
obtained with proton decoupling, while the lower trace spectrum shows pared, in order to assess whether a significant fraction of the
the coupling to protons for 11 of the 12 boron atoms in the molecule. The

signal became ‘‘invisible’’ at the lower temperature. Thespectra were acquired using a single scan (NS Å 1), and displayed after
peak at 273 K has an integral of 0.83 compared to the peakexponential filter sensitivity enhancement using a 5-Hz line broadening

(LB Å 5). at 323 K. Taking into account an 18% increase in the equilib-
rium magnetization at the lower temperature (proportional
to 1/T ) , the relative ‘‘visible’’ signal fraction for BSH in
glycerol at 273 K was 0.7. The 907 pulse length for thesedistinguished on the 10B NMR spectra of BSH dissolved in
spectra was 29 ms, the preacquisition blanking delay 45 ms,D2O, shown in Fig. 6. Figure 7 shows, for comparison, the
and the sampling interval in each receiver channel 5 msspectra of BSH in glycerol, at 323 and 273 K. The RF coil
( the instrument used quadrature detection with sequential
acquisition). Using the parameters derived below for the
relaxation at 273 K according to our model (Table 2), one
predicts a ‘‘visible’’ fraction of 0.85 for the above acquisi-
tion parameters. Given the uncertainties in determining the
integrals of broad signals, and the true effective time of the
signal sampling onset, there is reasonable agreement be-
tween the experimental observation and the theoretical ex-
pectation.

Table 1 lists the experimentally derived parameters for
10B relaxation in BSH at various temperatures. Spin–lattice
relaxation rates were determined from inversion-recovery
experiments, and some of the data and their calculated fits
are shown in Fig. 8. No deviation from single-exponential
recovery could be detected in any of the data sets. It should
be kept in mind that although the inequivalent boron sites
may have different quadrupolar coupling constants and re-
laxation rates, they are not resolved on the BSH/glycerol
spectra. Therefore all the results reported here, and the pa-
rameters derived from those results, represent averages

FIG. 7. 10B spectra of 75 mM BSH dissolved in glycerol at temperatures
which are probably heavily weighted toward the main-cageof 323 K (upper trace) and 273 K (lower trace) . Spectra were acquired
borons due to their large contribution (10/12) to the totaland processed using NS Å 1 and LB Å 30. The relative integrated areas

under the peaks are 1.00 for the spectrum at 323 K and 0.83 at 273 K. spectral intensity.
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16 BARAM AND BENDEL

For all temperatures between 288 and 323 K, the trans-
verse relaxation rates reported in Table 1 were derived from
the decay of echo centers on CPMG experiments. Some
representative data sets are shown in Fig. 9. As a precaution,
T2 experiments were repeated using different values for the
interecho delays (2t) . In principle, erroneous apparent de-
cay rates can be measured when the 2t interval is too long
(scalar couplings, exchange, diffusion, off-resonance ef-
fects) or when it is too short (spin locking). In the first
case (i.e., 2t too long), the apparent T2 values will usually
underestimate the true values (i.e., the apparent decay will
be faster than the true decay), while in the second case the
apparent T2 should be longer than the true value. In the
temperature range indicated above, no significant changes
in the measured T2 values were observed for variations of
2t between 0.2 and 0.7 ms. However, for the lower tempera-

FIG. 9. Experimental results of CPMG echo-train experiments at 318tures (268–283 K), we observed a systematic variation of
K (circles) with 2t Å 250 ms and at 293 K (squares) with 2t Å 400 ms.

the apparent decay rates with 2t, but in a direction which The solid curves were calculated using decay rates of 457 s01 for the 318
was opposite from that expected according to the above K and 1475 s01 for the 293 K data.
considerations: the relaxation rates became slower with in-
creasing interecho delays. We have, at this point, no explana-
tion for the above phenomenon, and can only speculate that broadening) and due to dephasing between isochromats with

different resonance offsets ( inhomogeneous broadening).it may have something to do with the creation of multiple-
quantum coherences by imperfect refocusing pulses. In any The latter effect can be predicted exactly (neglecting mag-

netic field inhomogeneities) from the resolved spectrumcase, we decided to measure the slow-component T2 values
at the lower temperatures from the free induction decays measured in D2O (Fig. 6) , from which the weight and reso-

nance offset of each isochromat can be determined. We cal-(FIDs) as will be described in the following paragraph.
These values were in all cases longer than the longest values culated this ‘‘inhomogeneous decay’’ function, and then di-

vided the experimental magnitude FIDs at the four lowestdetermined by CPMG experiments, and are the ones listed
in the first four rows of Table 1. temperatures by this function, to obtain a ‘‘corrected’’ FID,

the decay of which should be given only by relaxation ef-The magnitude of the free induction signal ( i.e., the signal
in both receiver channels added in quadrature) should decay fects. An example of such a corrected FID is shown in Fig.

10, together with the exponential function that best fitted theaccording to the transverse relaxation rates (homogeneous
decay at the later times, when only the signal from the slow-
est relaxation mode should contribute. The plots such as the
one in Fig. 10 were also used to evaluate the apparent
weights W3 , as listed in the last column of Table 1, by
extrapolating the curves back to t Å 0. As can be seen, the
apparent weight of the slow decaying component monotoni-
cally decreases with decreasing temperature, while the relax-
ation rate itself ( third column in Table 1) goes through a
maximum around 278 K, and then decreases with decreasing
temperature.

The calculated values for various relaxation parameters,
as implied by the theory, are listed in Table 2. These values
were computed as follows: The maximal 1/T1 rate was esti-
mated by interpolation to be 7.7 1 102 s01 . The simulated
spin–lattice relaxation data predicts this 1/T1 maximum at
v0tc Å 0.61. Since the value of v0 is known, the value of
the experimental 1/T1 maximum can then be used to calcu-
late the quadrupolar coupling constant, which turned out to

FIG. 8. Experimental results of inversion-recovery measurements at
be 1.25 MHz (assuming an axially symmetric tensor) . Using308 K (circles) and at 298 K (squares) . The solid curves were calculated
this value for qcc , the apparent values of tc were then calcu-using recovery rates of 408 s01 for the 308 K and 764 s01 for the 298 K

data. lated for all the temperatures, based on the best fit to the

AID JMR 1251 / 6j24$$$145 11-18-97 11:14:16 maga



17QUADRUPOLAR RELAXATION OF SPIN 3

FIG. 10. The dots are the experimental magnitude FID points from the
signal at 278 K, corrected for the first-order resonance offsets, as indicated

FIG. 11. Experimental T1 relaxation times (squares) and slow compo-in the text. The FID was acquired with 800 signal averages (repetition
nents of T2 relaxation times (circles) for 10B in BSH/glycerol vs tc , whichtime Å 100 ms) . The solid line is the exponential fit with a decay rate of
was set according to the best fit of the T1 data to theory. The solid lines1940 s01 .
are the calculated curves, using a quadrupolar coupling constant of 1.25
MHz and a resonance frequency of 53.73 MHz.

experimental values of 1/T1 . In case of deviation from axial
symmetry this parameter will also incorporate the value of where the faster transverse relaxation components become

important. This trend is also reflected in the extrapolated(1/ h 2 /3) . Having thus set both qcc and tc for each temper-
ature, all other parameters in Table 2, relating to spin–spin apparent weights of the slow relaxation component, which

are lower than predicted by the theory, using the valuesrelaxation and dynamic frequency shifts, were calculated
directly, without any further best-fit adjustments. for tc as inferred from the T1 values. It is possible that a

contribution from 1H– 10B dipolar interactions increases theFigure 11 shows a graphical presentation of the experi-
mental and calculated data, for T1 and the dominant compo- measured relaxation rates. However, we cannot rule out that

the experimental problems described before, i.e., the inabil-nent of T2 (l3) . There is reasonably good agreement between
the theory and the experimental behavior, although there is ity to measure very rapid transverse relaxation, and the error

associated with the extrapolation to t Å 0, introduced somea tendency for the measured T2 values to be shorter than the
theoretically predicted values, for the lower temperatures systematic error into the reported transverse relaxation pa-

TABLE 2
Calculated Parameters for 10B Relaxation in BSH/Glycerol

T(K) tc
a 0l1

b W1
c Dd1

d 0l2
b W2

c Dd2
d 0l3

b W3
c Dd3

d

268 8.9 9153 0.107 378 4394 0.283 88 1386 0.61 064
273 6.75 8122 0.07 334 4207 0.24 89 1518 0.69 046
278 5.1 7583 0.03 275 4183 0.16 87 1622 0.81 020
283 3.7 7259 0.007 199 4256 0.07 76 1627 0.92 12
288 2.85 6993 0.00 141 4345 0.03 64 1530 0.97 36

293 2.1 4330 0.009 50 1343 0.99 34
298 1.5 1105 1.00 29
303 1.17 930 1.00 22
308 0.865 733 1.00 14
318 0.48 433 1.00 5
323 0.385 352 1.00 3.5

a In nanoseconds.
b Transverse relaxation rates for the three components, in s01.
c Weights for the three transverse relaxation components.
d Second-order dynamic frequency shifts for the three components, in Hz.
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18 BARAM AND BENDEL

rameters. In this region, the transverse relaxation should up to v0tc É 1. As the motion becomes slower, the rate of
this relaxation component goes through a maximum, whileprobably be measured with instrumentation having much
its weight decreases, and the weights of the more rapid relax-shorter 907 and 1807 pulses, shorter preacquisition ‘‘dead
ation modes increase, so that the transverse relaxation decaytimes,’’ and faster sampling rates.
becomes distinctly nonexponential.We could not find any directly measured literature values

of the boron quadrupolar coupling constants in BSH. The
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